jaguarr
Be Your Own Hero
- Joined
- Nov 11, 2003
- Messages
- 43,566
- Reaction score
- 1
- Points
- 31
http://www.telegraph.co.uk/earth/ma...07/11/14/scisurf114.xml&CMP=ILC-mostviewedbox
Surfer dude stuns physicists with theory of everything
By Roger Highfield, Science Editor
Last Updated: 6:01pm GMT 14/11/2007
Have your say
Read comments
An impoverished surfer has drawn up a new theory of the universe, seen by some as the Holy Grail of physics, which has received rave reviews from scientists.
The E8 pattern (left), Garrett Lisi surfing (middle) and out of the water (right) Garrett Lisi, 39, has a doctorate but no university affiliation and spends most of the year surfing in Hawaii, where he has also been a hiking guide and bridge builder (when he slept in a jungle yurt).
In winter, he heads to the mountains near Lake Tahoe, Nevada, where he snowboards. "Being poor sucks," Lisi says. "It's hard to figure out the secrets of the universe when you're trying to figure out where you and your girlfriend are going to sleep next month."
Despite this unusual career path, his proposal is remarkable because, by the arcane standards of particle physics, it does not require highly complex mathematics.
Even better, it does not require more than one dimension of time and three of space, when some rival theories need ten or even more spatial dimensions and other bizarre concepts. And it may even be possible to test his theory, which predicts a host of new particles, perhaps even using the new Large Hadron Collider atom smasher that will go into action near Geneva next year.
advertisement
Although the work of 39 year old Garrett Lisi still has a way to go to convince the establishment, let alone match the achievements of Albert Einstein, the two do have one thing in common: Einstein also began his great adventure in theoretical physics while outside the mainstream scientific establishment, working as a patent officer, though failed to achieve the Holy Grail, an overarching explanation to unite all the particles and forces of the cosmos.
Now Lisi, currently in Nevada, has come up with a proposal to do this. Lee Smolin at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada, describes Lisi's work as "fabulous". "It is one of the most compelling unification models I've seen in many, many years," he says.
"Although he cultivates a bit of a surfer-guy image its clear he has put enormous effort and time into working the complexities of this structure out over several years," Prof Smolin tells The Telegraph.
"Some incredibly beautiful stuff falls out of Lisi's theory," adds David Ritz Finkelstein at the Georgia Institute of Technology, Atlanta. "This must be more than coincidence and he really is touching on something profound."
The new theory reported today in New Scientist has been laid out in an online paper entitled "An Exceptionally Simple Theory of Everything" by Lisi, who completed his doctorate in theoretical physics in 1999 at the University of California, San Diego.
He has high hopes that his new theory could provide what he says is a "radical new explanation" for the three decade old Standard Model, which weaves together three of the four fundamental forces of nature: the electromagnetic force; the strong force, which binds quarks together in atomic nuclei; and the weak force, which controls radioactive decay.
The reason for the excitement is that Lisi's model also takes account of gravity, a force that has only successfully been included by a rival and highly fashionable idea called string theory, one that proposes particles are made up of minute strings, which is highly complex and elegant but has lacked predictions by which to do experiments to see if it works.
But some are taking a cooler view. Prof Marcus du Sautoy, of Oxford University and author of Finding Moonshine, told the Telegraph: "The proposal in this paper looks a long shot and there seem to be a lot things still to fill in."
And a colleague Eric Weinstein in America added: "Lisi seems like a hell of a guy. I'd love to meet him. But my friend Lee Smolin is betting on a very very long shot."
Lisi's inspiration lies in the most elegant and intricate shape known to mathematics, called E8 - a complex, eight-dimensional mathematical pattern with 248 points first found in 1887, but only fully understood by mathematicians this year after workings, that, if written out in tiny print, would cover an area the size of Manhattan.
E8 encapsulates the symmetries of a geometric object that is 57-dimensional and is itself is 248-dimensional. Lisi says "I think our universe is this beautiful shape."
What makes E8 so exciting is that Nature also seems to have embedded it at the heart of many bits of physics. One interpretation of why we have such a quirky list of fundamental particles is because they all result from different facets of the strange symmetries of E8.
Lisi's breakthrough came when he noticed that some of the equations describing E8's structure matched his own. "My brain exploded with the implications and the beauty of the thing," he tells New Scientist. "I thought: 'Holy crap, that's it!'"
What Lisi had realised was that he could find a way to place the various elementary particles and forces on E8's 248 points. What remained was 20 gaps which he filled with notional particles, for example those that some physicists predict to be associated with gravity.
Physicists have long puzzled over why elementary particles appear to belong to families, but this arises naturally from the geometry of E8, he says. So far, all the interactions predicted by the complex geometrical relationships inside E8 match with observations in the real world. "How cool is that?" he says.
The crucial test of Lisi's work will come only when he has made testable predictions. Lisi is now calculating the masses that the 20 new particles should have, in the hope that they may be spotted when the Large Hadron Collider starts up.
"The theory is very young, and still in development," he told the Telegraph. "Right now, I'd assign a low (but not tiny) likelyhood to this prediction.
"For comparison, I think the chances are higher that LHC will see some of these particles than it is that the LHC will see superparticles, extra dimensions, or micro black holes as predicted by string theory. I hope to get more (and different) predictions, with more confidence, out of this E8 Theory over the next year, before the LHC comes online."
I've always thought the current Standard Model left too many variables out of the equation and String Theory has a lot of blanks that can't be filled in or tested. I'll be curious to read his paper when I find a little bit of free time. Sounds interesting.
jag
By Roger Highfield, Science Editor
Last Updated: 6:01pm GMT 14/11/2007
An impoverished surfer has drawn up a new theory of the universe, seen by some as the Holy Grail of physics, which has received rave reviews from scientists.
In winter, he heads to the mountains near Lake Tahoe, Nevada, where he snowboards. "Being poor sucks," Lisi says. "It's hard to figure out the secrets of the universe when you're trying to figure out where you and your girlfriend are going to sleep next month."
Despite this unusual career path, his proposal is remarkable because, by the arcane standards of particle physics, it does not require highly complex mathematics.
Even better, it does not require more than one dimension of time and three of space, when some rival theories need ten or even more spatial dimensions and other bizarre concepts. And it may even be possible to test his theory, which predicts a host of new particles, perhaps even using the new Large Hadron Collider atom smasher that will go into action near Geneva next year.
advertisement
Although the work of 39 year old Garrett Lisi still has a way to go to convince the establishment, let alone match the achievements of Albert Einstein, the two do have one thing in common: Einstein also began his great adventure in theoretical physics while outside the mainstream scientific establishment, working as a patent officer, though failed to achieve the Holy Grail, an overarching explanation to unite all the particles and forces of the cosmos.
Now Lisi, currently in Nevada, has come up with a proposal to do this. Lee Smolin at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada, describes Lisi's work as "fabulous". "It is one of the most compelling unification models I've seen in many, many years," he says.
"Although he cultivates a bit of a surfer-guy image its clear he has put enormous effort and time into working the complexities of this structure out over several years," Prof Smolin tells The Telegraph.
"Some incredibly beautiful stuff falls out of Lisi's theory," adds David Ritz Finkelstein at the Georgia Institute of Technology, Atlanta. "This must be more than coincidence and he really is touching on something profound."
The new theory reported today in New Scientist has been laid out in an online paper entitled "An Exceptionally Simple Theory of Everything" by Lisi, who completed his doctorate in theoretical physics in 1999 at the University of California, San Diego.
He has high hopes that his new theory could provide what he says is a "radical new explanation" for the three decade old Standard Model, which weaves together three of the four fundamental forces of nature: the electromagnetic force; the strong force, which binds quarks together in atomic nuclei; and the weak force, which controls radioactive decay.
The reason for the excitement is that Lisi's model also takes account of gravity, a force that has only successfully been included by a rival and highly fashionable idea called string theory, one that proposes particles are made up of minute strings, which is highly complex and elegant but has lacked predictions by which to do experiments to see if it works.
But some are taking a cooler view. Prof Marcus du Sautoy, of Oxford University and author of Finding Moonshine, told the Telegraph: "The proposal in this paper looks a long shot and there seem to be a lot things still to fill in."
And a colleague Eric Weinstein in America added: "Lisi seems like a hell of a guy. I'd love to meet him. But my friend Lee Smolin is betting on a very very long shot."
Lisi's inspiration lies in the most elegant and intricate shape known to mathematics, called E8 - a complex, eight-dimensional mathematical pattern with 248 points first found in 1887, but only fully understood by mathematicians this year after workings, that, if written out in tiny print, would cover an area the size of Manhattan.
E8 encapsulates the symmetries of a geometric object that is 57-dimensional and is itself is 248-dimensional. Lisi says "I think our universe is this beautiful shape."
What makes E8 so exciting is that Nature also seems to have embedded it at the heart of many bits of physics. One interpretation of why we have such a quirky list of fundamental particles is because they all result from different facets of the strange symmetries of E8.
Lisi's breakthrough came when he noticed that some of the equations describing E8's structure matched his own. "My brain exploded with the implications and the beauty of the thing," he tells New Scientist. "I thought: 'Holy crap, that's it!'"
What Lisi had realised was that he could find a way to place the various elementary particles and forces on E8's 248 points. What remained was 20 gaps which he filled with notional particles, for example those that some physicists predict to be associated with gravity.
Physicists have long puzzled over why elementary particles appear to belong to families, but this arises naturally from the geometry of E8, he says. So far, all the interactions predicted by the complex geometrical relationships inside E8 match with observations in the real world. "How cool is that?" he says.
The crucial test of Lisi's work will come only when he has made testable predictions. Lisi is now calculating the masses that the 20 new particles should have, in the hope that they may be spotted when the Large Hadron Collider starts up.
"The theory is very young, and still in development," he told the Telegraph. "Right now, I'd assign a low (but not tiny) likelyhood to this prediction.
"For comparison, I think the chances are higher that LHC will see some of these particles than it is that the LHC will see superparticles, extra dimensions, or micro black holes as predicted by string theory. I hope to get more (and different) predictions, with more confidence, out of this E8 Theory over the next year, before the LHC comes online."
I've always thought the current Standard Model left too many variables out of the equation and String Theory has a lot of blanks that can't be filled in or tested. I'll be curious to read his paper when I find a little bit of free time. Sounds interesting.
jag